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O F  L O O S E  M A T E R I A L S  
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A model and a procedure are suggested for  soh'hlg ttle problem of nonstationary heat conduction for 

the sample of  a moist material in the thermal vacuum method of measuring the moisture content of  

disperse materials. 

In determination of the moisture content of  powdered materials by the thermal vacuum method, use is 
generally made of the "thin-layer" model, where the temperature distribution over the thickness of the material 
layer is assumed to be unitbrm [1, 2]. On the one hand, this leads to a simple solution for the sample tempera- 
ture using the equation of energy balance, and on the other, this assumption introduces a certain error into the 
result of  the temperature measurement, since the temperature drop over the thickness of  the material layer 
reaches several degrees [31. The studies conducted also confirm the influence of the thickness of the bulk layer 
on the measurement result [4, 5]. Thus, the necessity arises for a more in-depth study of the temperature field 
in the sample of  the studied material and its influence on the result of  measuring the moisture content. 

The mathematical model of  the process of  moisture desorption in the thermal vacuum method of meas- 
uring the moisture content is described by a system of partial differential equations for the temperature, pres- 
sure, and potential of moisture transfer [6]. In the general case, the differential equations are nonlinear, since 
the coefficients of  transfer are functions of  these quantities. 

The solution of the problem tor the one-dimensional case assuming that the moisture evaporates uni- 
formly over the entire volume of the material and the coefficients of  heat and mass transfer do not change in 
moisture desorption is given in 14, 7]. Here, only the second period of the process of  drying was considered, 
which is justified only at low values of the moisture content. E. S. Krichevskii et al. [8] refined the mathemati- 
cal model and obtained the solution with allowance tbr the effect of  the side boundaries of  the vessel and tbr 
the case of high values of the moisture content, when the first period of drying must also be taken into ac- 
count. The solutions presented in these works, obtained by the methods of integral transtorms, are ineffective 
from the viewpoint of practical use, especially at small times, since they require calculation of a large number 
of terms of a complicated series. The determination of the temperature at small times is urgent in a rapid 
dynamic thermal vacuum method of measuring the moisture content [9, 10] that is distinguished by high speed 
and high metrological characteristics compared to the traditional thermal vacuum method. 

Thus, it becomes necessary to develop an engineering technique tbr calculating the thermal fields in a 

sample that, on the one hand, would allow one to determine rather simply the temperature field in the sample 
of the material studied and, on the other, would satisfy the necessary requirements on the accuracy of deter- 
mining the temperature. 

The problem tbrmulated can be solved by an approximate method that is based on combined use of the 
Laplace integral transform and variational methods [3, I l]. The essence of this approach resides in the fact that 
first the boundary-value problem is subjected to a Laplace integral transtbrmation and is reduced, with respect 
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to the transform, to the solution of a boundary-value problem in the remaining space coordinates. An approxi- 
mate solution of  the boundary-value problem is found by the Bubnov-Galerkin orthogonal method and then an 
approximate solution of the initial problem is found by passing to the inreverse transform. A numerical analysis 
of the results obtained shows that the calculation of  the temperature for a Fourier number Fo > 0.1 gives good 
coincidence with the exact value even in the first approximation. This corresponds to the traditional themlal 
vacuum method when the measurement time is 30 sec or more. The range of the Fourier numbers lor the 
dynamic thermal vacuum method is 0.05 < Fo < 0.1, which makes it possible to obtain the solution lor calcula- 
tion of the temperature to sufficient accuracy only in the third approximation [ 11]. Correspondingly, it is expe- 
dient to use this approach only in the case where the temperature field of the sample is determined in finding 
the moisture content by the traditional thermal vacuum method, when the extremum of the temperature vari- 
ation of the sample in its evacuation serves as the intbrmative parameter associated with the moisture content. 

The solutions obtained by the integral method of a thermal layer give rather good approximations at 
both small and large times [12, 13]. These solutions have a simple structure at large values of the Blot number 
Bi, which again corresponds to the traditional thermal vacuum method, where the coefficient of heat transfer 
t~T from the sample to the medium is large, which cannot be said about the dynamic thermal vacuum method, 
because in it the sample is structurally separated from the vapor-air medium by a heat-insulating layer [14]. 

To solve the formulated thermal problem, the author has selected, as a basis, the method of averaging 
developed in the 1970s for solving stationary problems in bodies with a complex configuration of the bounda- 
ries [15]. This method does not require selection of  a system of coordinate functions and works well even in 

the first approximation [13]. 
In the present work the author develops further the method of  averaging as applied now to nonstation- 

ary problems of  heat conduction. Let us consider the idea of this method on the example of solving the heat 
conduction equation tor a sample of thickness L whose lower surface is in contact with a temperature sensor 
and is thermally insulated from the medium: 

6-)20 W (t____)) ! o30 c)O ( °30 +/10] = O, 

~T 
O ( t = 0 ) = 0 ,  O = T - T  m, 17- 

(]) 

The power of the internal heat sources in the sample W(t) is determined by the amount of moisture 
evaporated in evacuation of the sample and can be calculated by the formula [2] 

W (t) = - W 0 exp ( -  o~vt), W (t) = U o b r ~ u .  (2) 

We apply to the differential equation an averaging operator that is found as follows: 

L 
1 

(, [o] = T J" o (x, t) ax = (o>. 
0 

(3) 

Owing to linearity, the operator/~, can be applied to the equation of heat conduction term by term: 

From the boundary conditions we have 
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Then 

Fa%-i tn~,~ 
/ , . = 1 - - ~  l - - -  " 
" L a , - J  L 

We introduce the coefficient ~ by the lormula 

~L 
V = V (t) - (4) 

(o) 

Calculations showed that we can assume approximately ~ -- const, and therein lies the first assumption of the 
method of averaging. This and subsequent assumptions are substantiated in [13, 15] in detail. Physically, ~ is 
the ratio of the mean superheating at the boundary to the mean superheating in the region and is termed the 

coefficient of nonuniformity of the temperature field. 
It follows from the theory of a regular mode that in a regular stage of the thermal process ~ is inde- 

pendent of time and is determined by the Biot number and the first eigenvalue tbr the given body [16]. 

We apply the opera tor / ,  to the remaining terms of Eq. (1): 

. , / [ a - ~ - j -  a -d -~ ,  1.,. - 

Having summed the results of application of the operator /x  to the individual terms of  the initial equa- 

tion, we obtain an ordinary differential equation with respect to (0): 

d (0)  a h ~  a W  o 
dt + ~ (0) + - - ~  exp ( -  otut) = 0 ,  (5) 

with the initial condition (O(0)) = 0. 
The solution of this problem is 

(0)  - U(?h (exp ( -  ~ u  t) - exp ( -  ot U ~tltt)), (6) 
c ( 1 - P,V) 

where ~ = ~T / (~ t / cyL ) .  
We nmke the approximate substitution (the second assumption of the method of averaging) 

O0 _ d (0) (0) + T exp ( -  ctut) . (7) 
at dt 

Having substituted this into (1), we obtain a boundary-value problem for determination of  the dependence ",3L 
in the coordinate x, where O~ means the first approximation for the temperature of the sample: 

cF 01 (x, t) t t~  dO l (013 
- ( 0 )  , = 0 ,  I - -  + h O I  = 0 .  

d, L Ca, )I,=L 

The solution of this problem is 

l,% 1 (X, l) = -- U q)t (P.r, 

(8) 

(9) 

281 



-8 

-6 

-4 

-2 

l 2 3 

lb zb 3'o t 

a ~  

20 

t5 

tO 

5 
2 3 4 L 

Fig. 1. Change in the temperature of  a sample as a function of  time: 1, 4) 
calculation by /brmula (13) fbr L = 5 and 2 mm,  respectively; 2, 3) cal- 
culation by formulas (6) and (14), respectively,  for L = 5 mm.  O, K; t, 

sec. 

Fig. 2. Dependence of the error of  calculation of  the temperature for the 
model o f  a "thin layer" of  a sample on the layer  thickness at different in- 
stants o f  time: 1) 50 sec; 2) 30; 3) 10. AO, %; L, mm. 

where 

U _  
h~¢ Uorb 
L c ( l - g v ) '  

(p, = exp ( -  Otvt) - exp ( -  o ~ l / t )  • (1o) 

The coefficient ~ can be defined more accurately as the ratio o f  the integral-mean superheat ing at the boundary 
to the integral-mean superheating in the region [13]: 

I ! 

t 0 t 0 (i l) 

/.i/ t L 

Knowing the dependence cp., = ~Pr(x) (10) and having per formed simple calculations, we write the final 

expression for ~: 

! (12)  
~ =  B i '  i+-g- 

where Bi = a T L / L  
Thus, we have obtained the first approximation of  the solution of problem (l) .  As was shown by [13, 

15], the method of averaging, even in the first approximation,  al lows one to obtain a result whose error does 
not exceed 1.5%. 

We write the lbrmula tbr O(x, t) at x = 0 with account  tbr  (12): 

Bi +v[ 
O! (0, t) = U°rb 1 _ B-i exp ( -  Otut ) - exp 

Bi + - 3 - L  l+-~- 

(13) 
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The expression for O(t) in the case of the "thin-layer" model can be obtained from (13) under the con- 

dition Bi = 0: 

0 (t) - U°rb 
c (1 - ~) [exp (-  ~tjt) - exp ( -  ~t; ~t)]. (14) 

Using formulas (6), (13), and (14), we calculated O for a sample of quartz sand with different thick- 
nesses of the layer L as a function of time. Here, the following initial data were taken: U0h = 0.3%, r = 2.4.10 ~' 
J/kg, c = 800 J/(kg.K), ~' = 1500 kg/m 3, ~. = 0.33 W/(m-K), OtT= 70 W/(m2-K), ~ /  = 0.1 sec -I. 

Figure i presents graphs of the change in the temperature of the sample as a function of time. It is 
seen from the graphs that use of tormula (6) does not give a noticeable gain in accuracy compared to the 
model for a "thin layer" of the sample (14); the error in determining O by tormula (14) increases with the 
thickness of the bulk layer of the sample L (Fig. 2). The error AO was found using the expression 

O - O  I 
A O =  I "  00%. 

1 

We can note that the value of AO increases with nine, and there/ore calculation of the sample tempera- 
ture by the "thin-layer" model can hardly be considered as justified in the case of the traditional thermal vac- 
uum method, since the measurement time here can be several minutes 121. Therefore, it is recommended that 
the temperature field in the sample be analyzed using (9), (10), and (12). 

N O T A T I O N  

U0 and U, initial and current moisture content of the material; T, current temperature, K; Tm, tempera- 
ture of medium; ~., thermal conductivity, W/(m.K); a, thermal diffusivity, m2/sec; O, superheating, K; c, spe- 
cific heat of the sample, J/(kg-K); r, heat of  vaporization, J/kg; y, density of the sample, k~m3; txt/, coefficient 
of the rate of moisture desorption, see-l; h, coefficient of completeness of moisture extraction; ~T, coefficient 
of heat transfer, W/(m2-K); L, thickness of the sample, m. 
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